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Abstract—Talking video frames occasionally drop while
streaming for reasons like network errors, which greatly hurts the
online team collaboration and user experiences. Directly generat-
ing the dropped frames from the remaining ones is unfavorable
since a person’s lip motion is usually non-linear and thus hard to
be restored when consecutive frames are missing. Nevertheless,
the audio content provides strong signals for lip motion and is less
likely to drop during transmitting. Inspired by this, as an initial
attempt, we present the task of audio-driven talking video frame
restoration in this paper, i.e., restoring dropped video frames by
jointly leveraging the audio and remaining video frames. Towards
the high-quality frame generation, we devise a cross-modal frame
restoration network. This network aligns the complete audio
content with video frames, precisely identifies and sequentially
generates the dropped frames. To justify our model, we construct
a new dataset, Talking Video Frames Drop, TVFD for short,
consisting of 2.5K video and 144K frames in total. We conduct
extensive experiments over TVFD and another publicly accessible
dataset - Voxceleb2. Our model obtains significantly improved
performance as compared to other state-of-the-art competitors.

Index Terms—Frame Restoration, Frame-Dropped Video,
Cross-Modal Learning, Dynamic Programming, Generative Ad-
versial Network.

I. INTRODUCTION

ONLINE videotelephony services (e.g., video conference,
live streaming, and online education) thrive with the

catastrophic burst of COVID-19 to meet the communication
needs under social distancing. For instance, Zoom has reached
more than 300 million daily meeting participants1, and more
than 2 million viewers watch live videos simultaneously in
Twitch2. Despite its significance in teamwork and entertain-
ment, one pivotal problem of the online talking video services
is that some video frames often unexpectedly drop when
people are talking (an example can be found in Figure 1).
As a result, the user experience is largely affected, leading to
losing active users (AU). Several factors contribute to frame
dropping, including but not limited to network error, camera
problem, and software malfunction.
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Fig. 1: Examples of frame dropping in video conferences. Under
normal conditions, seven consecutive frames with the complete audio
should be transmitted to other conference participants. However,
five of them are dropped due to unknown reasons. Consequently,
other participants can only receive the woman’s voice while her face
abnormally remains static.

As compared to video frames [1], the audio signal is less
likely to drop during transmitting because of its unsophis-
ticated coding format and easy-to-compression [2]. Service
providers are thus motivated to ensure the audio transmitting
primarily. Moreover, Nagrani et al. [3] revealed the high
correlation between audio voices and human faces in visual
frames. In light of this, we present the task of Audio-driven
Talking Video Frame Restoration, dubbed as ATVFR, which
aims to restore dropped frames with the complete audio track
and remaining video frames. This task is distinguished from
other related ones like talking face generation [4], audio-
visual lip synchronization [5], and video-based frame inter-
polation [6], because of its practicality in the online talking
video applications. In particular, the first two tasks mainly
target at generating a precise lip motion, while the last one
inevitably requires consecutive video frames and neglects the
audio signals despite their importance.

ATVFR is challenging due to the following facts: 1) Identi-
fying the dropped video frames is arduous, as frame dropping
is quite random during the video service. 2) It is hard to
align lip motions with the audio. Because the continuous
deformation of the participant’s lips relates to the audio content
and the personal characteristic at the same time [4]. And 3)
in addition to preserving the facial details, the background
around the face should be unblurred. Nevertheless, it is rather
complicated to implement, as the motions and illumination are
non-linear and intricate in the real world.

In this paper, to address the aforementioned challenges, we
present a Cross-modal fRame rEstorATion nEtwork, CREATE
for short. An overview of our model is shown in Figure 2.
It mainly involves two key networks, Ali-Net and FE-Net,
short for alignment network and flow estimation network,
respectively. In particular, Ali-Net employs two VGG-M-
based [7] models to process video and audio inputs separately
and identify which frames have been dropped. The FE-Net
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Fig. 2: Schematic illustration of our proposed CREATE model. Ali-Net on the left takes the frame-dropped video and the complete audio as
inputs with separate network streams. The alignment between these two modalities is performed, and the dropped frames are consequently
identified. Afterward, FE-Net is devised to generate the dropped frames based upon the complete audio and remaining frames via a GAN
model.

is utilized to estimate the optical flow among input frames
and generate the dropped ones based on generative adversarial
networks (GANs). Thereafter, we leverage the audio content
in the generator and discriminator of FE-Net to fine-tune the
optical flow, making the restored video frames more consistent
with the audio. To facilitate the validation of our proposed
model, we further construct a new dataset, namely TVFD -
Talking Video Frames Drop, which is the first of its kind and
large-scale, comprising over 2.5K videos and 144K frames in
total. To be more specific, we invite 25 volunteers, and each
of them is required to face up to the built-in device cameras
and make meaningful utterances without noise. Moreover, each
video is ensured to contain one visible face and motionless
background only. It is worth mentioning that the videos are
split according to the person IDs, which implies that the
training, validation, and testing sets contain separate persons.

We conduct extensive experiments over the newly con-
structed TVFD dataset and a widely used dataset Vox-
celeb2 [8]. The experimental results demonstrate that our
CREATE model yields superior performance than baselines
pertaining to frame drop identification, with an average devi-
ation of 9.1% performance improvement. Moreover, regard-
ing the dropped frame generation, CREATE delivers higher-
quality frames in terms of lip movements and background
sharpening.

The main contributions of this work are threefold:

• To the best of our knowledge, we are the first on defining
the task of audio-driven talking video frame restoration
in literature. Apart from the promising application in the
online talking video services, ATVFR is also applicable
to many other video-related tasks, such as video trans-
mission.

• We devise a novel cross-modal frame restoration model to
restore the dropped frames, and the experimental results
demonstrate the superiority of our model over several
state-of-the-art baselines.

• We construct a new large-scale, high-quality dataset -
TVFD, to facilitate the development of audio-driven
talking video frame restoration.

The rest of this paper is structured as follows. Section II
briefly reviews the related literature. We introduce the con-

struction of the TVFD dataset in Section III. Section IV
elaborates the definition of the ATVFR task and the proposed
model. The experimental settings and results are respectively
introduced in Section V and Section VI, followed by the
conclusion and future work of this paper in Section VII.

II. RELATED WORK

In this section, we study three literature streams related
to ATVFR, i.e., frame interpolation [9], talking face gener-
ation [10], and audio-visual synchronisation [11].

Frame Interpolation generates intermediate frames be-
tween consecutive frames to form coherent videos both spa-
tially and temporally. Related existing methods along with this
line can be roughly classified into two groups: flow-based and
flow-free. Approaches in the first group are introduced to ob-
tain the intermediate frames via bi-directional optical flows [6].
For example, DAIN [12] improves the flow estimation using
a depth-aware flow projection layer, and the frames can then
be generated through an adaptive warping operation. Xu et
al. [13] exploited curvilinear trajectory and variable velocity
to estimate flows and developed a flow reversal approach
for frame synthesis. As to the flow-free methods, they often
utilize spatially-adaptive convolution instead of optical flow
to estimate the intermediate frames [14]. For instance, Choi et
al. [15] employed a PixelShuffle operator equipped with the
channel-wise attention to replace the optical flow computation
module. Compared with flow-based approaches, flow-free ones
usually achieve higher efficiency. However, directly applying
frame interpolation methods into ATVFR is sub-optimal. Since
these models only utilize the visual information while ignoring
the audio cues, making it infeasible to achieve accurate lip
motion generation.

Talking Face Generation targets at generating a face video
with precise lip motions [16]. Existing methods can be divided
into single-modality and multi-modality generation models
based on the modalities they exploited for generation. The
former ones leverage the visual information only, which is then
employed to transfer the source facial expression to the target
one [17]. The GAN approaches conditioned on images [18]
or landmarks [19] are frequently used in these models. As to
the multi-modality one, both visual and audio information is
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Fig. 3: Some examples from the newly collected TVFD dataset. The dropped frames are blurred and marked with red boxes. It is worth
noting that our videos may contain sufficient head movements. Note that there exist complete and complex head movements in videos like
video 1 and 3.

considered. For example, DAVS [4] presents to disentangle
the audio-visual representation with an adversarial training
approach. External information is often introduced to this task.
ATVGnet [20] converts the audio content to landmarks [21]
for better face video generation, and Wen et al. [22] extended
it to 3D face model [23]. LipGAN [5] and Wav2Lip [24]
focus only on the lip synchronization, leaving the upper face
masked, to generate precise lip motions. In addition, some
approaches such as PC-AVS [25] are also presented to generate
head motions from a source pose video. To sum up, talking
face generation shows a great advantage in tuning the lip
movements, while generating the motions beyond the lip area
is often arduous [26].

Audio-Visual Synchronisation is the task of retrieving a
matched audio segment from a set of audio candidates based
on a video clip. Among the initial efforts, SyncNet [11]
employs convolutional neural networks (CNNs) to learn a joint
embedding space of videos and audios, wherein the audio
segment can be effectively retrieved. Inspired by SyncNet,
metric learning [27] and multi-way matching strategy [28]
are adopted to determine the relevance level between audios
and videos. Nagrani et al. [29] proposed to separately learn
the linguistic content and speaker identity with a content
loss. The natural cross-modal synchronization between face
and audio is then exploited. Afouras et al. [30] introduced
a self-supervised learning method, where the voice sources
are firstly localized and grouped, followed by the optical flow
modeling to aggregate the audio-visual information over time.
Although these methods have achieved assured success, they
are all applied to retrieve a video or an audio segment. This
is different from ATVFR, where each video frame should be
taken into consideration.

III. PRELIMINARIES

In this section, we firstly elaborate the newly collected
Talking Video Frames Drop dataset. Thereafter, a general data
processing technique is given to extract both the audio and
video frame features.

A. Dataset Collection

To facilitate the study of this task, we collect a new large-
scale dataset - TVFD, composed of 2,532 videos annotated by

TABLE I: Statistics of TVFD.

#videos 2,532
#video frames 144,511
#average frames per video 57.1
#train/val/test videos 2,045/253/234
average duration (s) per video 1.9
frame rate 30
frame drop rate 0.87
resolution 480p
audio sample rate 16kHz
MFCC dims 13
Spectrogram dims 128

25 volunteers with average frames of 57.1 per video. In the
process of collecting data, annotators are required to record
videos without any noise. Moreover, each video contains
one visible face and motionless background only. Note that
the videos are split into training, validation, and testing sets
according to the person IDs, which is helpful to evaluate
the generalization capability of models. The statistics of this
dataset are summarized in Table I.

The privacy agreement limits the access to the real-world
user talking videos, which drives us to collect a helpful dataset
with crowdsourcing approaches. To simulate the video frame
drop information in the real-world situation, during the video
recording, we employed specially-tuned cameras and drivers
provided by the Alibaba Group. These equipments enable us
to comprehensively analyze the packet loss and the camera
occupancy of online terminals, which are useful to reproduce
the frame dropping process. Subsequently, we acquire the
original complete videos and corresponding frame-dropped
videos at the same time. We then deeply analyze the frame-
dropped videos and find that the frame drop rate is about 0.87,
which means that only about 1 frame can be successfully
transmitted per 10 frames. Some sampled videos with the
dropped counterparts are illustrated in Figure 3.

B. Data Preprocessing

Inspired by previous studies [28], [31], the audio contents
are preprocessed in three steps. Firstly, each second of au-
dio is sequentially divided into 100 segments with a 10ms
sliding window (each segment is a 25ms audio). Secondly, p
segments are sampled evenly, where the value of p is based
on the video frame rate in the dataset, namely 30 for TVFD.
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Fig. 4: Process of the audio segment generation.

Lastly, we extract two adjacent segments before and after the
current sampled segment and compose a more contextualized
audio segment (five segments included). Figure 4 illustrates
the process of audio segmentation. For the video frame, we
identify the face through the dlib tool3 and resize each frame
to 256× 256.

In this way, the audio, the frame-dropped video, the com-
plete video, and the generated video can be respectively
represented as:

A = {M0,M1, . . . ,Mn−2,Mn−1},
VD = {ID0 , ID1 , . . . , IDk−2, IDk−1},
V = {I0, I1, . . . , In−2, In−1},

V̂ = {Î0, Î1, . . . , În−2, În−1},

(1)

where k ≤ n is the number of remaining frames in VD. The
symbols IDi , and Ii respectively denote three-channel RGB
images with a resolution of 256 × 256, and Mi represents a
segment from audio A.

IV. PROPOSED METHOD

In this paper, we present a cross-modal frame restoration
network, dubbed as CREATE, to tackle the task of audio-
driven talking video frame restoration. In what follows, we
first present the method formulation, and then the two critical
networks of CREATE: alignment network (Ali-Net) and flow
estimation network (FE-Net), are sequentially introduced.

A. Method Formulation

We firstly provide the formal definition of ATVFR in this
subsection. Specifically, given a frame-dropped video VD and
a complete audio A, ATVFR targets at generating a video V̂
based on VD and A:

V̂ = φ(VD,A), (2)

where φ constitutes a function with a parameter set θ, and V̂
should be sufficiently similar to the ground-truth video V:

θ∗φ = argmin
θφ

(L(V̂ ,V )), (3)

where θ∗ denotes the optimal parameters; L is an empirical
loss function.

3http://dlib.net/.

To implement this, we devise CREATE method, which
could be stated as:

V̂ = ffe(fali(VD,A),A), (4)

where fali(·, ·) and ffe(·, ·) denote the Ali-Net and FE-Net,
respectively. Based on A, V , and V̂ , we can calculate the loss
according to the content of Section IV and obtain the following
goals as:

θ∗ = argmin
θ

(LT (V,A) + LG(V̂ ,V )), (5)

where LT and LG are the loss functions utilized in the Ali-Net
and FE-Net, respectively; LT constraints Ali-Net to identify
which frames in V are dropped, and LG measures the quality
of V̂ ; θ is the set of parameters. We expect to obtain a set of
parameter combinations θ∗ that minimizes LT + LG.

B. Alignment Network

With the preprocessing of video frames and audios, the Ali-
Net demonstrated in Figure 5 is utilized to identify which
frames in the complete video V are dropped. Specifically,
given the frame-dropped video VD and audio A, Ali-Net
obtains a position sequence s = {s0, s1, . . . sk−1}, where si
represents the position of the frame IDi in V . Take Figure 2 as
an example, Ali-Net calculates s0 = 0 and s1 = 4 based on
VD and A, denoting that ID0 and ID1 are actually I0 and I4 in
V , respectively. To implement this, we design two modules
in Ali-Net, i.e., cross-modal feature extraction module and
dynamic position retrieval module. The former is utilized to
extract the features from inputs in different modalities and
map these representations into a common latent space. The
latter retrieves the position sequence s based on the extracted
features at once with an effective dynamic programming
strategy.
Cross-modal feature extraction module. The inputs to this
module are composed of the complete video V and the audio
A. To extract the video and audio features, we design two
sub-networks [32], Video-Ali and Audio-Ali, as illustrated in
Figure 6.

To enhance the feature extraction, we firstly obtain an
interfering audio AI by randomly shuffling the segments of
A. In this way, the corresponding segments Mi and MI

i in
A and AI would share the same personal characteristics, yet
with inconsistent audio contents. In light of this, we could
minimize the influence of irrelevant factors, such as timbre
and tone.

We then employ the triplet loss [33] function as follows:

LT = max{d(h(Ii), h(Mi))− d(h(Ii), h(MI
i )) + r, 0}, (6)

where Ii is the video frame from the complete video V , Mi

denotes audio segments from A and MI
i is the artificially

constructed interfering audio AI . Meanwhile, the function h(·)
denotes the procedure of feature extraction of Video-Ali and
Audio-Ali, r represets a threshold which is a hyperparameter
and set to 1.0 in our experiments, and d(·, ·) is defined as:

d(x,y) = ‖x− y‖2 , (7)
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pool1 1x3x3                      96

conv1 5x7x7                      96

(b) Video

pool2 1x3x3                      96

conv2 2x5x5                    256

conv3 1x3x3                    256

conv4 1x3x3                    256

pool5 1x3x3                      96

conv5 1x3x3                    256

pool6 2x2x2                      96

conv6 1x6x6                    512

fc7                              1024

pool1 3x3                          96

conv1 3x3                         64

(a)  Audio

pool2 3x3                          96

conv2 3x3                        192

conv3 3x3                        384

conv4 3x3                        256

pool5 3x3                          96

conv5 3x3                        256

pool6 2x2                          52

conv6 4x2                        512

fc7                            1024

Fig. 6: Trunk architecture of (a) Audio-Ali and (b) Video-Ali.

which indicates the distance in the common space between
input Mi and Ii.

The triplet loss function in Eqn.(6) refers the video frame
Ii as an anchor, and the corresponding audio segments Mi

and MI
i as positive and negative samples, respectively. By

means of calculating the difference between d(h(Ii), h(Mi))
and d(h(Ii), h(M

I
i )), Ali-Net pulls the matched video frame

Ii and the positive audio segment Mi closer while pushes
the unmatched negative segment MI

i further away [34]. The
hyperparameter r works as a threshold to make the positive
and negative samples more separable. The main objective of
this module is to learn two skilled feature extraction sub-
networks, i.e., Video-Ali and Audio-Ali, which are favorable
in feature extraction and feature space mapping.
Dynamic position retrieval module. In this module, we apply
an effective dynamic programming strategy to predict the
position sequence. We first employ the well-trained Video-
Ali and Audio-Ali to consume the frame-dropped video VD
and the complete audio A, respectively. We then calculate the
distance between any pair of the visual-audio features IDi and
Mj with the distance function in Eqn.(7). Consequently, a
distance matrix D can be obtained, where each element Dij

represents the distance between IDi and Mj :

Dij =
∥∥h(IDi )− h(Mj)

∥∥
2
. (8)

Subsequently, we need to determine which video frames are
matched with the audio segments based on the distance matrix.
A popular approach is to introduce a threshold β. For instance,
Dij < β implies that IDi and Mj are matched. However, this
approach has some flaws which are difficult to resolve. One
example is shown in Figure 7(a), with the ground truth position
sequence s = {0, 2, 3, 4}. If we use a fixed threshold β = 5 in
this case, the predicted sequence will be s′ = {0, None, 5, 2},
which is not satisfied. Beyond the fixed threshold, we can
also employ dynamic β to make s′ closer to the ground truth.
However, complex tuning and increased computational cost
come along, leading to sub-optimal performance.

The key issue of the threshold approach is that it ignores the
order of the video frames in VD. Considering the situation that
ID0 matches M2, ID1 will not match M1, no matter whether
D11 is smaller than β. The possible reason is that the frame
ID0 is prior to ID1 , and the matched audio segment of ID1 cannot
appear in front of M2 (i.e., the index of M should be larger
than 2). Therefore, for all video frames {ID0 , ID1 , ID2 ...IDk−1}, it
is expected to explore an ordered sequence of audio segments
{M′

0,M
′

1,M
′

2...M
′

k−1} that minimizes the sum of their cor-
responding distances:

dsum =
k−1∑
i=0

d(IDi ,M
′

i). (9)

To this end, we propose a dynamic programming method,
which can be formulated as:

DP(i, j) =

{
Dij , i = 0,

Dij +min{DP(i− 1, 0: j)}, i > 0,
(10)

where DP is a new matrix constructed via the distance matrix.
Each value DP(i, j) denotes the smallest dsum between video
frames {ID0 , ID1 , ...IDi } and audio segments {M0,M1...Mj}
if IDi matches Mj .

Figure 7 shows an example of calculating the DP matrix.
Specifically, Figure 7(a) is the distance matrix, with the ground
truth position sequence s = {0, 2, 3, 4}. Figure 7(b) - (d)
illustrate the computational process, where each DP(i, j) is
derived by the previous state. Taking ID2 , whose calculation
procedure is shown in Figure 7(c), as an example, DP(2, 0)
and DP(2, 1) are null since two frames, i.e., ID0 and ID1 have
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Fig. 7: One running example based upon our dynamic strategy. From left to right, (a) is the distance matrix. (b) and (c) represent the
computational process for each column illustrated in Eqn.(10), respectively, and (d) is the DP matrix.

already been computed. For DP(2, 2), it can be determined
by:

DP(2, 2) = D22 +min{DP(1, 0: 2)}, (11)

where D22=8, and min{DP(1, 0: 2)} = min{−, 23}. The
calculation of DP(2, 3), DP(2, 4), and DP(2, 5) follows
analogous dictates.

Consequently, DP matrix, as shown in Figure 7(d), is
obtained. The rightmost column denotes the optimal dsum
between {ID0 , ID1 , ID2 ...IDk−1} and different audio segment sets.
We seek the minimum value DP(3, 4), search the path from
the DP(3, 4) to DP(0, 0: k) backward, and finally acquire
a sequence st = {DP(3, 4),DP(2, 3),DP(1, 2),DP(0, 0)}.
In light of this, we predict a position sequence s′ = {0, 2, 3, 4}
from st, which is consistent with the correct sequence.

C. Flow Estimation Network

Based on the output frame sequence s from Ali-Net, for
any two consecutive frames IDi and IDi+1, it is expected that x
(si+1-si-1) frames are dropped in this case. We then leverage
the FE-Net to restore these x frames. For simplicity, we define
l = si and r = si+1, and then IDi and IDi+1 could also be
expressed as Il and Ir, respectively.
Generator Pipeline. As shown in Figure 8, the input of the
generator of FE-Net is composed of two frames Il, Ir, and an
audio segment Mt, where l < t < r. The dropped frame It
therefore can be restored based on the optical flows Ft→l and
Ft→r. Towards this end, we construct four U-Net-based [35]
networks, namely audio net, flow net, refine net, and
inter net, to sequentially generate the dropped frames.

Firstly, audio net is applied to process Mt to extract the
audio feature Pt. We then utilize flow net to estimate the
bi-directional flow Fl→r and Fr→l based on Il and Ir. To
approximate the intermediate optical flow F̂t→l and F̂t→r,
refine net is employed to fuse and tune the bi-directional
flows. It is well accepted that the audio can strongly support
the non-linear lip movements generation [5], [24], Pt is thus
taken as an external channel to Fl→r and Fr→l in refine net.
To this end, these features constitute the input feature map and
the output features are referred to two new flows F̂t→l and
F̂t→r. This method can take advantage of the reconstruction

capability of U-Net. F̂t→l and F̂t→r could then be employed
to respectively generate the intermediate frame Ît→l and Ît→r:{

Ît→l = g(Il, F̂t→l),

Ît→r = g(Ir, F̂t→r),
(12)

where g(·, ·) is a backward warping function which can be
implemented with the bilinear interpolation [36], [37]. Finally,
we integrate the outputs, i.e., Il, Pl, F̂l→r, Ît→l, Pt, Ît→r,
F̂r→l, Pr, Ir together, and input them to the inter net for
learning the optical flows Ft→l and Ft→r, and a visualization
matrix W. It is worth noting that Pl and Pr are features of
Ml and Mr, respectively. W ∈ [0, 1] is a weight matrix with
the same size as Il and Ir. Each value W(i, j) represents the
contribution of each pixel in Il and Ir to the restored frame
Ît. The function of obtaining Ît is defined as follows:

Ît = (1− v)W � g(Il,Ft→l)
+v(1−W)� g(Ir,Ft→r),

(13)

where v = t−l
x+1 . A normalization factor is applied to normalize

Ît,

Ît =
1

Z
� Ît, (14)

where Z = (1− v)W + v(1−W).
Loss Functions for the Generator. The overall pixel-wise
loss function LG in the generator is a linear combination of
four terms:

LG = λrLr + λpLp + λwLw + λsLs, (15)

where λr, λp, λp, and λs denote the weights of these four
losses. In the next, the detailed function of these losses is
sequentially provided.

Reconstruction loss Lr. Similar to [6], it models the recon-
struction quality of the intermediate frames with:

Lr =
1

x

x∑
k=1

∥∥∥Ik − Îk

∥∥∥
1
. (16)

Perceptual loss Lp. It is employed to make frames sharper:

Lp =
1

x

x∑
k=1

∥∥∥φ (Ik)− φ(Îk)∥∥∥
2
, (17)

where φ denotes conv4 3 from a pretrained VGG16
model [38].
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Fig. 8: Illustration of the FE Net structure.

Warping loss Lw. This loss function is used to model the
the quality of the computed optical flow, which is defined as:

Lw=‖Il − g (Ir,Fl→r)‖1 + ‖Ir − g (Il,Fr→l)‖1

+
1

x

x∑
k=1

‖Ik − g(Il,Fk→l)‖1

+
1

x

x∑
k=1

‖Ik − g(Ir,Fk→r)‖1.

(18)

Smoothing loss Ls. It is built to encourage neighboring
pixels to have similar flow values:

Ls = ‖∇Fl→r‖1 + ‖∇Fr→l‖1 . (19)

Discriminator. The discriminator we adopt predicts the prob-
ability of whether the restored frame and audio are paired or
not, resulting in the following LD of FE-Net:

LD(G,D) =E[logD(I,P)]+

E[log(1−D(G(I,P),P)].
(20)

V. EXPERIMENT SETTINGS

A. Datasets

We extensively evaluated our model on two datasets - TVFD
and Voxceleb2. Voxceleb2 is collected from YouTube videos,
which contains over 1 million utterances of 6,112 celebrities.
The audio settings of Voxceleb2 are the same as TVFD, while
the video frame rate is 25, and the resolution is 224 × 224.
It is worth noting that Voxceleb2 is not originally suitable for
the ATVFR task. We, therefore, leveraged the same strategy
to produce the frame drop information following TVFD. In
addition, we split each dataset into training, validation, and
testing sets with a ratio of 8:1:1. Note that the data partition
criterion is based on person IDs to ensure that each person
appears only in one set. This is useful to evaluate the model
generalization capacity.

B. Parameter settings

We implemented our model with the Pytorch toolkit4. And
the Adam optimizer [39] is adopted with a fixed learning rate
of 2×10−4. All model parameters are initialized using random
normal distribution with a mean of 0 and a standard deviation
of 0.02. The model is trained up to 10 epochs with a mini-
batch size of 1, i.e., the model takes one video as input at each

4https://pytorch.org/.

time. The threshold r used in Eqn.(6) is set 1.0 as default.
We followed the same settings as reported in [6] regarding
the different loss weights in Eqn.(15) for a fair comparison,
where the weights are set as λr = 1.0, λp = 0.005, λp = 0.8,
and λs = 1.0.

C. Evaluation Metrics

We employed the commonly used reconstruction metrics
Peak Signal-to-Noise Ratio (PSNR) [40], Structural Similar-
ity Index Measure (SSIM) [41], and Multiscale Structural
Similarity Index Measure(MS-SSIM) [42] to evaluate the
generalization quality of the restored frames. Besides, for Ali-
Net, we calculated the average and median of the difference
between frame positions in the frame-dropped video and the
prediction from Ali-Net to measure the ability to identify the
dropped frames.

D. Compared Baselines

We compared our model with seven state-of-the-art base-
lines regarding the metrics PSNR, SSIM, and MS-SSIM.
Thereinto, two baselines are about talking face generation:
namely, AVTGNET [20] and DAVS [4], which generate frames
based mainly on the audio. LipGAN [5] and Wav2Lip [24] are
proposed to synthesize video frames by jointly exploring video
and audio, primarily focusing on the generation of lip motions.
And the remaining three baselines, i.e., super-slomo [6], super-
slomo with audio, and RIFE [43], are models from the frame
interpolation.
• AVTGNET [20] devises a cascade GAN approach to

generate the talking face video, where the audio is firstly
transferred to landmarks and then converted to video
frames. In addition, a dynamically adjustable pixel-wise
loss with the attention mechanism and the regression-
based discriminator are applied to enhance the model
sharpening ability.

• DAVS [4] integrates the identity-related and speech-
related information by learning disentangled audio-visual
representation. It applies an associative-and-adversarial
training process to disentangle these information and
generate video frames.

• LipGAN [5] is also termed as “Face-to-Face Transla-
tion”. This model could translate a video of a person
speaking in language A into a target language B with
realistic lip synchronization. It is one variant of GAN
and generates face images conditioned on the audio.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on August 19,2022 at 02:05:46 UTC from IEEE Xplore.  Restrictions apply. 

https://pytorch.org/


1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3118287, IEEE
Transactions on Multimedia

8 IEEE TRANSACTIONS ON MULTIMEDIA

TABLE II: Performance comparison between CREATE and baselines.

Model TVFD Voxceleb2
PSNR ↑ SSIM ↑ MS-SSIM ↑ PSNR ↑ SSIM ↑ MS-SSIM ↑

AVTGNET 14.593 0.444 0.510 19.951 0.700 0.737
DAVS 18.981 0.692 0.729 21.672 0.719 0.748
LipGAN 24.157 0.804 0.864 22.975 0.723 0.767
Wav2Lip 24.639 0.817 0.880 23.261 0.747 0.806
Super-slomo 26.379 0.856 0.881 24.726 0.785 0.833
Super-slomo with audio 26.625 0.859 0.901 25.125 0.792 0.839
RIFE 26.791 0.860 0.914 25.461 0.810 0.861
CREATE 26.935 0.863 0.924 25.813 0.823 0.870

TABLE III: Results of Ali-Net and baselines on TVFD.

Model Average ↓ Median ↓
AVE-Net 14.620 11
Multi-way matching 12.360 9
Ali-Netthreshold 12.377 10
Ali-Net 11.293 8

• Wav2Lip [24] is an upgraded version of lipGAN. This
method employs a powerful lip-sync discriminator to
enhance the generation process.

• Super-slomo [6] is a flow-based frame interpolation
model. This model applies U-Net to estimate the optical
flows between two frames, calculates the intermediate
flows by weight, and synthesizes the frame based on the
intermediate flows.

• Super-slomo with audio is a variant of Super-slomo
implemented in this paper. Considering that Super-slomo
does not support multi-modal inputs, we, therefore, aug-
mented the input channels of U-Net with another audio
input. The audio features are then cascaded with the
optical flow to restore high-quality video frames.

• RIFE [43] leverages IFNet to directly estimate the inter-
mediate flows from frames instead of linearly combining
them. RIFE is supervised by ground truth optical flow in
an end-to-end fashion based on a leakage distillation loss.

VI. EXPERIMENT RESULTS

In this section, we demonstrate and analyze the obtained
experimental results. In particular, we attempt to answer the
following research questions:
• RQ1: Can our model outperform several state-of-the-art

baselines?
• RQ2: Are the two key networks of CREATE - Ali-Net

and FE-Net, separately effective in this task?
• RQ3: Why the proposed method outperforms other base-

lines qualitatively?
• RQ4: Is our model practical in online talking video

services on both robustness and real-time requirements?
• RQ5: How does our method perform under actual user

test settings?

A. Performance Comparison (RQ1)

To ensure a fair comparison, we input the position sequence
s obtained by Ali-Net to baselines to identify which frames
should be generated. The experimental results are displayed in
Table II. From this table, we have the following observations:

• Traditional talking face generation models (i.e., AVT-
GNET and DAVS) perform inferior to other methods.
The reason might be that these models consider only
the lip motions while ignoring other movements and the
background information. Meanwhile, the performance of
these two models on Voxceleb2 is better than that of
TVFD. We attributed this phenomenon to the fact that
the face regions in Voxceleb2 are more strict than TVFD,
namely, having less background information. Besides, the
range of head motions is much smaller in Voxceleb2.

• By contrast, LipGAN and Wav2Lip, which can effectively
integrate video and audio features simultaneously, out-
perform AVTGNET and DAVS. We speculated that these
two approaches generate videos based on the remaining
frames, thereby ensuring particular background.

• The frame interpolation baselines achieve promising per-
formance due to the fact that they rely on the warped
frames and hence obtain accurate background such as
illumination information. However, unlike the talking
face generation methods, the performance of these frame
interpolation models declines on Voxceleb2 (although
they are still significantly better than ATVGNET and
DAVS). The reason is that the image quality of Voxceleb2
is slightly lower than TVFD, which hurts the performance
of these three models and CREATE.

• Compared with all the baselines, our proposed model
CREATE achieves superior performance regarding the
PSNR, SSIM, and MS-SSIM metrics. It is verified that
our model can learn the interactions between visual and
audio features more effectively; thereby, the generated
face motions become more accurate, and the sharpening
of the background is barely affected.

B. Ablation Study (RQ2)

CREATE mainly involves two critical networks, namely
Ali-Net and FE-Net. In view of this, we presented the results
from these two networks separately in this subsection.
Ali-Net. We employed the Average and Median metrics to
evaluate Ali-Net and baselines. These two metrics are com-
puted based on the original frame positions of the frames
in VD and the predictions from the models. Specifically,
assuming that the predicted position sequence obtained by
Ali-Net from a frame-dropped video is s′ = {1, 2, 3}, and
the ground truth position sequence is s = {2, 3, 4}, then we
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TABLE IV: Performance comparison between FE-Net and baselines with the ground truth position sequence.

Model TVFD Voxceleb2
PSNR ↑ SSIM ↑ MS-SSIM ↑ PSNR ↑ SSIM ↑ MS-SSIM ↑

AVTGNET 14.593 0.444 0.510 19.951 0.700 0.737
DAVS 18.981 0.692 0.729 21.672 0.719 0.748
LipGAN 24.164 0.801 0.863 22.974 0.724 0.769
Wav2Lip 24.642 0.819 0.884 23.263 0.746 0.808
Super-slowmo 28.686 0.906 0.942 26.700 0.812 0.870
Super-slomo with audio 28.967 0.909 0.937 26.722 0.820 0.872
RIFE 30.365 0.916 0.951 26.961 0.832 0.880
FE-Net 30.791 0.923 0.962 27.413 0.853 0.897

obtained the prediction bias as:

Alib =
n−1∑
i=0

|si − s′i|, (21)

where si and s′i are the corresponding value in s and s′,
respectively, and Alib = 3 in this case. Applying the above
calculations to all frame-dropped videos, we could naturally
calculate the average and median according to all the obtained
Alib values, and these two results are the metrics to evaluate
the ability to identify the dropped frames. The smaller these
two metrics are, the closer the predicted sequence s′ to ground
truth s is, and the better the model performs.

We used three baselines, i.e., AVE-Net [27], multi-way
matching model [31], and Ali-Netthreshold in this experiment.
The former two are state-of-the-art audio-visual synchroniza-
tion approaches, and the latter is constructed by introducing
a threshold strategy to Ali-Net to demonstrate the necessity
of dynamic position retrieval module. We conducted this ex-
periment on the TVFD dataset. Table III displays that Ali-Net
can significantly surpass the baselines over the two metrics. In
particular, Ali-Net outperforms the multi-way matching model
with 9.1% on Average and 11.1% on Median. In addition, it
can also be observed that the Ali-Net with threshold strategy
does not perform well, which further highlights the superiority
of the dynamic programming strategy.
FE-Net. To evaluate the restoration capability, we employed
the ground truth position sequence as input to FE-Net and
baselines rather than the outputs from Ali-Net. We leveraged
DAVS, AVTGNET, LipGAN, Wav2Lip, super-slomo, super-
slomo with audio, and RIFE as baselines. All settings are the
same as Section VI-A.

As can be seen from Table IV, our method can significantly
outperform all the baselines. Note that the performance of
FE-Net and the three frame interpolation models (i.e., super-
slomo, super-slomo with audio, and RIFE) is greatly boosted
compared to the full model in Table II. The reason is that
we utilized the ground truth position sequence in this case.
In contrast, the other two talking face generation baselines,
i.e., AVTGNET and DAVS, are the opposite, since their video
input has only one frame and does not actually need position
sequences. The performance of LipGAN and Wav2Lip fluc-
tuates very slightly since the lack of video frame problem is
still not addressed.

C. Qualitative Results (RQ3)

In this subsection, firstly, we evaluated our method CREATE
and two baselines, i.e., DAVS and RIFE, on the TVFD dataset,

and demonstrated some generated samples in Figure 9. As
can be observed in Figure 9(a), DAVS generates favorable
lip motions while other facial expressions such as closed
eyes are ignored. Moreover, we zoomed in the background
of the samples in Figure 9(b) and found that the background
generated by DAVS is relatively blurred. In Figure 9(c), it can
be seen that the lip motions of RIFE rarely change, which
can be attributed to the lack of audio content. Compared
with RIFE, the lip motions are more acceptable in DAVS.
However, the generated frame colors are very different from
the ground truth. One possible reason is that DAVS does not
utilize illumination information when generating frames. In
general, CREATE leverages all the lip motions, illumination,
and other facial expressions, enabling itself to deliver better
results.

In addition, we would like to explore why LipGAN and
Wav2Lip perform relatively less favorably on this task. To this
end, we randomly selected 32 consecutive frames generated
by Wav2Lip and compared them with CREATE and ground
truth on the Voxceleb2 dataset. As shown in Figure 10, we
can observe that:
• In Figure 10(a), the illumination of the Wav2Lip frames

is satisfactory, and the lip motions generated by Wav2Lip
are moderately consistent with ground truth. This is
because Wav2Lip primarily focuses on editing a small
region around the lips, and the other regions are directly
copied from the original image.

• Except for the shape of lips, Wav2Lip performs worse on
the upper face, especially in the region of head motions
and blinking. As can be observed from Figure 10(b),
Wav2Lip generates frames in a loop. It can be seen more
clearly in the enlarged images of Figure 10(c) that when
the lady in the ground truth frames opens her eyes, the
eyes generated by Wav2Lip are closed, which seriously
affects the performance of Wav2Lip. By contrast, our
method, CREATE, can circumvent this problem.

D. Robustness Analysis (RQ4)

To further verify the robustness of CREATE, we employed
different frame drop rates in the TVFD dataset. Specifically,
the frame drop rate utilized in Section VI-A, VI-B, and VI-C
is 0.87, i.e., about seven frames dropped of every eight ones.
And we explored the capability of CREATE at more diverse
frame drop rates.

To roughly delineate the frame drop rate boundaries, we
conducted a user study, recorded the comfort score, and
demonstrated the results in Figure 11. It can be observed
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Fig. 9: Ground truth (G.T.) and generation results from baselines DAVS (D.), RIFE(R.), and our method CREATE (C.).
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(c) Enlarge the face in frames 1 and 12.(b) The upper face in frames 1 to 5 and frames 12 to 16.

Fig. 10: Ground truth (G.T.) and generation results from baseline Wav2Lip(W.) and our method CREATE (C.).

that the users’ viewing experience starts to drop sharply when
the rate reaches 1

2 , and the score tends to converge once we
increase the drop rate to 15

16 .
Through controlling the cameras and applications, we ad-

justed the frame drop rate from 1
2 to 15

16 . The videos were
fed directly into the trained model as a new testing set, and
we compared the performance of CREATE with three frame
interpolation baselines in Figure 12(a) and Figure 12(b). The
observations are as follows:
• The performance of all the models degrades consistently

with the increase of the frame drop rate.
• When frame drop rate is 1

2 , the dropped frames can be
well restored by CREATE and RIFE, which implies that
high-quality frames could be generated without the audio
information when few frames are dropped.

• It is challenging to restore high-quality frames for all the
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Fig. 11: The scores of viewing comfort of different frame drop rates.

methods when the frame drop rate becomes 15
16 , since

most visual information is dropped in this case.
• Our FE-Net performs the best over all the baselines

pertaining to each frame drop rate. This proves the
robustness of our method under various drop rate settings.
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Fig. 12: Performance comparison between CREATE and three baselines with respect to the frame drop rate.

E. Real-time Analysis (RQ4)

In order to verify the functionality of our approach in
real-world scenarios, we applied our model to the online
service provided by Alibaba Group on a small scale. In this
experiment, a video and an audio stream is the input to
CREATE. The audio is continuous, while the video stream
may drop frames. We reported the frame restoration per second
(FR/s) in Figure 12(c). The key observations are as follows:
• CREATE can restore about 53 frames per second in our

experimental environment (a single RTX2080Ti), which
can effortlessly meet the real-time requirements when the
frame drop rate is 0.87 (the video is 30 fps).

• With the increase of frame drop rate, the speed of
generating frames is getting faster. One possible reason
is that the time of I/O and preprocessing (such as audio
feature extraction and image reading) is saved. And when
the frame drop rate reaches no less than 7

8 , the FR/s
begins to be stable since I/O is no longer the leading
cause for time-consuming.

It is worth noting that our model requires at least two frames
to restore the dropped frames. In order to ensure that the model
works properly, we set a buffer for the video stream to store
the acquired video frames. This strategy can cause time delay
to the video transmitting. Figure 12(d) shows the delay with
respect to different frame drop rates. We can observe that when
the frame drop rate is 0.87, the delay is 0.7 seconds, which is
quite acceptable in practical applications.

In addition to restoring the dropped frames online, our
model can also be applied to some offline applications. For
example, users may use some personal terminals with low-
quality hardware to record and upload videos. The CPU
can be overloaded, and the frame drop rate is thus raised
unexpectedly. In this case, our model works to restore these
videos, freeing users from multiple recordings and improving
user experiences.

F. User Study (RQ5)

In addition to the quantitative evaluations, we also per-
formed user studies to validate the effectiveness of the pro-
posed method. To this end, we invited 41 volunteers of
different genders, ages, and occupations to conduct the blind
test. The volunteers were asked to watch 20 videos, which
could be ground truth or synthesized videos via methods of

TABLE V: Actual user test among Ground truth(G.T.), DAVS, RIFE,
Wav2Lip, and CREATE.

Model Authenticity Continuity Overall perception
G.T. 9.77 9.49 9.53
DAVS 3.91 8.58 6.72
RIFE 9.18 8.68 7.90
Wav2Lip 4.74 5.71 5.63
CREATE 9.29 8.83 8.61

DAVS, RIFE, Wav2Lip, and our CREATE. Furthermore, the
method category is kept blind to volunteers. For each video,
the volunteers were required to score the videos based on the
following indicators:

• Authenticity indicates the faithfulness level of each given
video, including whether the video is recorded by a
natural person (not synthesized) and whether the back-
ground in the video is unblurred. A score of 10 means
that this video is recorded by a natural person in a real
environment.

• Continuity evaluates the smoothness of each video, espe-
cially the facial movements. The difference between this
metric and the authenticity is that it does not consider
the reality of faces. For example, the facial movements
of characters in animation, such as Zootopia5, are fluid,
while the characters do not exist in the real world. A score
of 10 demonstrates that the smoothness of the video is
on par with ordinary videos.

• Overall perception is employed to measure the overall
viewing experience of the video. A score of 10 indicates
that the video is “comfortable” for the subject, while a
lower score expresses some disappointing factors, such
as lags and jitter.

The overall results are demonstrated in Table V, where the
observations are three-fold:

• The optical-flow-based approaches, i.e., RIFE and CRE-
ATE, excel in terms of authenticity, which is also ob-
served in Section VI-C. In contrast, the other two meth-
ods are less favorable. Volunteers can easily distinguish
DAVS as less realistic due to its blurred background and
almost non-existent head motions. Wav2lip, on the other
hand, was identified as a synthetic video by most subjects
due to its looping facial movements and severe jitter.

5https://en.wikipedia.org/wiki/Zootopia.
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• In terms of continuity, Wav2lip performs worse than the
other three methods due to its cyclic head motions.

• There is a particular gap between the ground truth and
the synthesized videos regarding the overall perception.
Volunteers’ feedback demonstrates that DAVS, RIFE, and
Wav2Lip affect the users’ viewing experience because of
the stillness of heads, unreasonable lip motions, and jitter
caused by circular frames, respectively. CREATE, on the
other hand, is the closest to real video in volunteers’
ratings. One possible reason is that CREATE effectively
leveraged the multi-modal information to generate videos.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present the task of audio-driven talk-
ing video frame restoration, which is practical and effective
in online talking video service applications. To address the
challenging task, a cross-modal frame restoration model is
proposed to identify and then restore the dropped frames,
which jointly leverages the remaining video frames and the
audio signals. Regarding the two key networks in this model,
Ali-Net aligns the video and audio and then identifies the
dropped frames via a dynamic position retrieval strategy; FE-
Net generates the dropped frames based upon the optical flow
features. To justify our proposed model, we build a new large-
scale and high-quality dataset. We perform extensive exper-
iments on this new dataset and another benchmark dataset.
The results demonstrate that our model achieves state-of-
the-art performance when compared to a series of baselines.
Moreover, the robustness is also verified, and it thus meets the
real-time requirements of online talking video service.

This work opens a new research revenue to restore the
dropped frames from both videos and audios. Nevertheless,
notably, this challenge is far from being settled, as the results
leave a certain space for future studies. Following efforts
could be devoted to two aspects: 1) building an end-to-end
framework to perform the two sub-tasks, i.e., frame drop
identification and generation. And 2) exploring flow-free and
more efficient feature extraction approaches.
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